S množinami okolo sveta

Tatiana Jajcayová

Katedra Aplikovanej Informatiky

Fakulta Matematiky, Fyziky a Informatiky Univerzita Komenského

> Absolventské prednášky GJH 31.marca 2015

Príklad:

 $G = \mathbb{Z}_7 = \{0, 1, 2, 3, 4, 5, 6\}.$ Množina $D = \{1, 2, 4\} \subseteq \mathbb{Z}_7$

$$2-1 = 1$$
 $4-2 = 2$ $4-1 = 3$
 $1-4 = 4$ $2-4 = 5$ $1-2 = 6$

D je (7,3,1) diferenčná množina. Je to aj (7,3,1) dizajn.

Fanova Rovina

Príklad: $G = \mathbb{Z}_{11} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}.$ Množina $S = \{1, 3, 9, 5, 4\} \subseteq \mathbb{Z}_{11}$

Multimnožina:

$$D(S) = \{9, 3, 7, 8, 2, 5, 9, 10, 8, 6, 4, 5, 4, 2, 7, 1, 3, 1, 6, 10\} =$$
$$= \{1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10\}$$

Teda S je (11, 5, 2) diferenčná množina.

- klasický kombinatorický koncept
- symetrické dizajny
- diferenčné množiny sa používajú pri kódovaní na konštrukciu vector codebook

Construction

Let λ be a positive integer.

Take $\{M_n\}_{n=1}^{\infty}$ to be the sequence of subsets of \mathbb{N} defined recursively as follows :

1. $M_1 = \{ m_0, m_0 + 1 \}$, where m_0 is an arbitrary element of \mathbb{N} ; 2.

$$M_{n+1} = M_n \cup \{2(k+1), 2(k+1) + j\}$$

where $k = \max M_n$ and j is the smallest positive integer which appears in $D(M_n)$ fewer than λ times

Then, the set

$$M_{\lambda} = \bigcup \{ M_n \mid n \in \mathbb{N} \}$$

is a λ -difference set on \mathbb{N} .

- všetky nové rozdiely sú väčšie ako staré
- nové rozdiely sa objavia nanajvýš 2 krát
- Táto konštrukcia funguje vďaka odláčaniu problémov ďaleko

Definition

Let Λ be a sequence of nonnegative integers

 $\{\lambda_i\}_{i=1}^{\infty}$.

A Λ -generalized difference set S is a subset of \mathbb{N} such that each positive integer i appears as a difference s - s' of elements from S exactly λ_i times.

Sequence Λ is called the *frequency sequence of S*.

Uvažujme postupnosť:

$$\Lambda = \{3,1,1,1,\ldots\}$$

Prípad 1.

$$\Lambda = \{3,1,1,1,\ldots\}$$

Prípad 2.

$$\Lambda=\{3,1,1,1,\ldots\}$$

Prípad 3.

Theorem

Let $\Lambda = {\lambda_i}_{i=1}^{\infty}$ be a sequence of positive integers such that $\lambda_i \ge 2$ for all but finitely many $i \in \mathbb{N}$. Then there exists a generalized difference set S of type Λ .

Vynechané:

 $\Lambda 's$ that contain infinitely many entries equal to 1

- ► the sequences A with infinitely many \u03c6_i = 1 but only finitely many \u03c6_i ≥ 2
- ► the sequences Λ with infinitely many λ_i = 1 as well as infinitely many λ_i ≥ 2.

Theorem (TJ, R.Jajcay)

Let $\Lambda = {\lambda_i}_{i=1}^{\infty}$ be a frequency sequence consisting entirely of 1's and 2's, containing infinitely many 2's. Then there exists a generalized difference set D of type Λ .

Príklad:

$\Delta \; = \; \{1,3,1,3,1,3,\ldots\}$

Theorem (Swara Kopparty)

Let $\Lambda = {\lambda_i}_{i=1}^{\infty}$ be a frequency sequence consisting of 0's and 1's containing only finitely many 0's. Then there exists a generalized difference set S of type Λ .

Theorem (Martin Štefaňák)

" Triangular algorithm "for finite frequency sequences.

 s_n grows very fast with respect to n

In all the sequences we have constructed so far

$$s_n \geq 2^{n/2}$$

So all the sequences constructed so far have an exponential growth. On the other hand, the obvious lower bound gives

$$\frac{n(n-1)}{2} \leq \sum_{i=1}^{s_n-1} \lambda_i.$$

$$\Lambda=\{1,1,1,1,\ldots\}$$

$$n(n-1)/2 < s_n$$

Any generalized difference set of type $\{1,1,1,\ldots\}$ has to grow at the magnitude $\Omega(\mathit{n}^2)$

Let $\Lambda = {\lambda_i}_{i=1}^{\infty}$ be a sequence of positive integers, and let ${M_n}_{n=1}^{\infty}$ be a sequence of subsets of \mathbb{N} defined recursively as follows :

- 1. $M_1 = \{m_1, m_1 + 1\}$, where m_1 is an arbitrary positive integer;
- 2. let j be the smallest positive integer that appears in $Df(M_n)$ less than λ_j times, the set M_{n+1} is defined from the set M_n by setting

$$M_{n+1} = M_n \cup \{m_{n+1}, m_{n+1} + j\},\$$

where m_{n+1} is the *smallest* positive integer not belonging to M_n and satisfying the property $\Lambda(M_n \cup \{m_{n+1}, m_{n+1} + j\}) \leq \Lambda.$

A computer run for S_{Λ} , with $\Lambda = \{1, 1, 1, 1, ...\}$, appears to indicate the rate of growth of about n^4 .

Let $\Lambda = {\lambda_i}_{i=1}^{\infty}$ be a sequence of positive integers, and let ${S_n}_{n=1}^{\infty}$ be a sequence of subsets of \mathbb{N} defined recursively as follows :

- 1. $S_1 = \{s_1\}$, where s_1 is an arbitrary positive integer;
- 2. the set S_{n+1} is defined from the set S_n by setting

$$S_{n+1}=S_n\cup\{s_{n+1}\},$$

where s_{n+1} is the *smallest* positive integer not belonging to S_n that satisfies the property $\Lambda(S_n \cup \{s_{n+1}\}) \leq \Lambda$. Then $S_{\Lambda} = \bigcup \{S_n \mid n \in \mathbb{N}\}.$

- The differences are not constructed successively in an increasing order
- The rate of growth is the "slowest possible", at least at the beginning
- There is no guarantee, that the differences that are being skipped will eventually be filled

- In a computer simulation, we computed the first elements of S_Λ, Λ = {1,1,1,1,...}.
 In a computation up to s_i ≥ 10,000,000, the smallest difference that was still missing was 33.
- It is however impossible to draw any conclusions there were several other small numbers missing, but when we got all the way up to s_i ≥ 1,000,000, they were filled.
- We do not know at this point, whether the supergreedy algorithm constructs the desired generalized difference set.
- pekná práca Ivany Kellyérovej

Príbuzný problém Paula Erdős

Počas Erdős ovej návštevy v Lincolne, NE, Paul Erdős zadal nasledujúci problém:

Let S be a set of integers, and let r_i denote the number of different ways in which the positive integer i appears as a **SUM** of two (not necessarily distinct) elements from S.

Is there a set *S* with the property $r_i \ge 1$, for all $i \in \mathbb{N}$, such that $\lim_{i\to\infty} r_i < \infty$?

Tatiana Jajcayová

FMFI UK

Tatiana Jajcayová

FMFI UK Difference sets

Theorem (TJ, R. Jajcay)

There exists a set of integers S such that each positive number appears as a sum of two elements from S exactly once.

Construction

- 1. $A_1 = \{0, 1\};$
- 2. let j be the smallest positive integer that does not appear as a sum of two elements from A_n , then the set A_{n+1} is defined from the set A_n by setting

$$A_{n+1} = A_n \cup \{a_{n+1} + j, -a_{n+1}\},\$$

where $a_{n+1} = 4 \cdot max\{|a_i| | a_i \in A_n\} + 1$.

Denote $S = \bigcup \{A_n \mid n \in \mathcal{N}\}.$

"But I meant to say that S is a set of **positive** integers"

Problem of Erdős - Correct Version

Let S be a set of positive integers, and let r_i denote the number of different ways in which the positive integer *i* appears as a SUM of two (not necessarily distinct) elements from S.

Is there a set *S* with the property $r_i \ge 1$, for all $i \in \mathbb{N}$, such that $\lim_{i\to\infty} r_i < \infty$?

