S MNOŽINAMI OKOLO SVETA

Tatiana Jajcayová

Katedra Aplikovanej Informatiky

Fakulta Matematiky, Fyziky a Informatiky Univerzita Komenského

Absolventské prednášky GJH 31.marca 2015

Klasický príklad na grupách

Príklad:
$G=\mathbb{Z}_{7}=\{0,1,2,3,4,5,6\}$.
Množina $D=\{1,2,4\} \subseteq \mathbb{Z}_{7}$

$$
\begin{array}{lll}
2-1=1 & 4-2=2 & 4-1=3 \\
1-4=4 & 2-4=5 & 1-2=6
\end{array}
$$

D je $(7,3,1)$ diferenčná množina. Je to aj $(7,3,1)$ dizajn.

Fanova Rovina

Klasický príklad na grupách

Príklad:

$G=\mathbb{Z}_{11}=\{0,1,2,3,4,5,6,7,8,9,10\}$.
Množina $S=\{1,3,9,5,4\} \subseteq \mathbb{Z}_{11}$
Multimnožina:

$$
\begin{aligned}
D(S) & =\{9,3,7,8,2,5,9,10,8,6,4,5,4,2,7,1,3,1,6,10\}= \\
& =\{1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10\}
\end{aligned}
$$

Teda S je $(11,5,2)$ diferenčná množina.

Klasický príklad na grupách

- klasický kombinatorický koncept
- symetrické dizajny
- diferenčné množiny sa používajú pri kódovaní na konštrukciu vector codebook

Construction

Let λ be a positive integer.
Take $\left\{M_{n}\right\}_{n=1}^{\infty}$ to be the sequence of subsets of \mathbb{N} defined recursively as follows :

1. $M_{1}=\left\{m_{0}, m_{0}+1\right\}$, where m_{0} is an arbitrary element of \mathbb{N}; 2.

$$
M_{n+1}=M_{n} \cup\{2(k+1), 2(k+1)+j\}
$$

where $k=\max M_{n}$ and j is the smallest positive integer which appears in $D\left(M_{n}\right)$ fewer than λ times

Then, the set

$$
M_{\lambda}=\bigcup\left\{M_{n} \mid n \in \mathbb{N}\right\}
$$

is a λ-difference set on \mathbb{N}.

- všetky nové rozdiely sú väčšie ako staré
- nové rozdiely sa objavia nanajvýš 2 krát
- Táto konštrukcia funguje vd’aka odláčaniu problémov d'aleko

Generalized Difference Sets on Positive Integers

Definition

Let Λ be a sequence of nonnegative integers

$$
\left\{\lambda_{i}\right\}_{i=1}^{\infty} .
$$

A Λ-generalized difference set S is a subset of \mathbb{N} such that each positive integer i appears as a difference $s-s^{\prime}$ of elements from S exactly λ_{i} times.

Sequence Λ is called the frequency sequence of S.

Non-Existing Example

Uvažujme postupnost:

$$
\Lambda=\{3,1,1,1, \ldots\}
$$

Prípad 1.

Non-Existing Example

$$
\Lambda=\{3,1,1,1, \ldots\}
$$

Prípad 2.

Non-Existing Example

$$
\Lambda=\{3,1,1,1, \ldots\}
$$

Prípad 3.

Existenčná Veta

Theorem
Let $\Lambda=\left\{\lambda_{i}\right\}_{i=1}^{\infty}$ be a sequence of positive integers such that $\lambda_{i} \geq 2$ for all but finitely many $i \in \mathbb{N}$. Then there exists a generalized difference set S of type Λ.

Vynechané:

Λ 's that contain infinitely many entries equal to 1

- the sequences Λ with infinitely many $\lambda_{i}=1$ but only finitely many $\lambda_{i} \geq 2$
- the sequences Λ with infinitely many $\lambda_{i}=1$ as well as infinitely many $\lambda_{i} \geq 2$.

Theorem (TJ, R.Jajcay)
Let $\Lambda=\left\{\lambda_{i}\right\}_{i=1}^{\infty}$ be a frequency sequence consisting entirely of 1's and 2 's, containing infinitely many 2 's. Then there exists a generalized difference set D of type Λ.

Príklad:

$$
\Delta=\{3,1,3,1,3,1, \ldots\}
$$

Example

$$
\Delta=\{1,3,1,3,1,3, \ldots\}
$$

Theorem (Swara Kopparty)

Let $\Lambda=\left\{\lambda_{i}\right\}_{i=1}^{\infty}$ be a frequency sequence consisting of 0 's and 1's containing only finitely many 0 's. Then there exists a generalized difference set S of type Λ.

Theorem (Martin Štefaňák)
" Triangular algorithm"for finite frequency sequences.

Density questions

s_{n} grows very fast with respect to n
In all the sequences we have constructed so far

$$
s_{n} \geq 2^{n / 2}
$$

So all the sequences constructed so far have an exponential growth. On the other hand, the obvious lower bound gives

$$
\frac{n(n-1)}{2} \leq \sum_{i=1}^{s_{n}-1} \lambda_{i}
$$

Example

$$
\begin{gathered}
\Lambda=\{1,1,1,1, \ldots\} \\
n(n-1) / 2<s_{n}
\end{gathered}
$$

Any generalized difference set of type $\{1,1,1, \ldots\}$ has to grow at the magnitude $\Omega\left(n^{2}\right)$

Greedy Construction

Let $\Lambda=\left\{\lambda_{i}\right\}_{i=1}^{\infty}$ be a sequence of positive integers, and let $\left\{M_{n}\right\}_{n=1}^{\infty}$ be a sequence of subsets of \mathbb{N} defined recursively as follows:

1. $M_{1}=\left\{m_{1}, m_{1}+1\right\}$, where m_{1} is an arbitrary positive integer;
2. let j be the smallest positive integer that appears in $\operatorname{Df}\left(M_{n}\right)$ less than λ_{j} times, the set M_{n+1} is defined from the set M_{n} by setting

$$
M_{n+1}=M_{n} \cup\left\{m_{n+1}, m_{n+1}+j\right\}
$$

where m_{n+1} is the smallest positive integer not belonging to M_{n} and satisfying the property

$$
\Lambda\left(M_{n} \cup\left\{m_{n+1}, m_{n+1}+j\right\}\right) \leq \Lambda .
$$

Greedy Construction

A computer run for S_{Λ}, with $\Lambda=\{1,1,1,1, \ldots\}$, appears to indicate the rate of growth of about n^{4}.

Supergreedy Construction

Let $\Lambda=\left\{\lambda_{i}\right\}_{i=1}^{\infty}$ be a sequence of positive integers, and let $\left\{S_{n}\right\}_{n=1}^{\infty}$ be a sequence of subsets of \mathbb{N} defined recursively as follows:

1. $S_{1}=\left\{s_{1}\right\}$, where s_{1} is an arbitrary positive integer;
2. the set S_{n+1} is defined from the set S_{n} by setting

$$
S_{n+1}=S_{n} \cup\left\{s_{n+1}\right\}
$$

where s_{n+1} is the smallest positive integer not belonging to S_{n} that satisfies the property $\Lambda\left(S_{n} \cup\left\{s_{n+1}\right\}\right) \leq \Lambda$.
Then $S_{\Lambda}=\bigcup\left\{S_{n} \mid n \in \mathbb{N}\right\}$.

Supergreedy Construction

- The differences are not constructed successively in an increasing order
- The rate of growth is the "slowest possible", at least at the beginning
- There is no guarantee, that the differences that are being skipped will eventually be filled

Supergreedy Construction

- In a computer simulation, we computed the first elements of $S_{\Lambda}, \Lambda=\{1,1,1,1, \ldots\}$.
In a computation up to $s_{i} \geq 10,000,000$, the smallest difference that was still missing was 33.
- It is however impossible to draw any conclusions - there were several other small numbers missing, but when we got all the way up to $s_{i} \geq 1,000,000$, they were filled.
- We do not know at this point, whether the supergreedy algorithm constructs the desired generalized difference set.
- pekná práca Ivany Kellyérovej

Príbuzný problém Paula Erdős

Počas Erdős ovej návštevy v Lincolne, NE, Paul Erdős zadal nasledujúci problém:

Let S be a set of integers, and let r_{i} denote the number of different ways in which the positive integer i appears as a Sum of two (not necessarily distinct) elements from S.

Is there a set S with the property $r_{i} \geq 1$, for all $i \in \mathbb{N}$, such that $\overline{\lim _{i \rightarrow \infty}} r_{i}<\infty \quad ?$

Theorem (TJ, R. Jajcay)
There exists a set of integers S such that each positive number appears as a sum of two elements from S exactly once.

Construction

1. $A_{1}=\{0,1\}$;
2. let j be the smallest positive integer that does not appear as a sum of two elements from A_{n}, then the set A_{n+1} is defined from the set A_{n} by setting

$$
\begin{aligned}
& \quad A_{n+1}=A_{n} \cup\left\{a_{n+1}+j,-a_{n+1}\right\}, \\
& \text { where } a_{n+1}=4 \cdot \max \left\{\left|a_{i}\right| \mid a_{i} \in A_{n}\right\}+1
\end{aligned}
$$

Denote $S=\bigcup\left\{A_{n} \mid n \in \mathcal{N}\right\}$.
"But I meant to say that S is a set of positive integers"

Problem of Erdős - Correct Version

Let S be a set of positive integers, and let r_{i} denote the number of different ways in which the positive integer i appears as a Sum of two (not necessarily distinct) elements from S.

Is there a set S with the property $r_{i} \geq 1$, for all $i \in \mathbb{N}$, such that $\lim _{i \rightarrow \infty} r_{i}<\infty \quad ?$

